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Conductance of a Quantum Wire in the Wigner-Crystal Regime
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We study the effect of Coulomb interactions on the conductance of a single-mode quantum wire
connecting two bulk leads. When the density of electrons in the wire is very low, they arrange in a finite-
length Wigner crystal. In this regime the electron spins form an antiferromagnetic Heisenberg chain
with an exponentially small coupling J. An electric current in the wire perturbs the spin chain and gives
rise to a temperature-dependent contribution of the spin subsystem to the resistance. At low temperature
T � J this effect is small, and the conductance of the wire remains close to 2e2=h. At T � J the spin
effect reduces the conductance to e2=h.
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where
to first approximation one can view the electrons in a
quantum wire as a Wigner crystal of particles repelling
Experiments with short one-dimensional (1D) conduc-
tors (quantum wires) have demonstrated [1] that their
conductance is quantized in units of 2e2=h. The univer-
sality of this result is readily understood in the model of
noninteracting electrons. It is remarkable, however, that
in most experiments observing the quantization of
conductance the Coulomb interactions between electrons
are not weak, �naB��1 * 1. (Here n is the electron den-
sity, aB � " �h2=me2 is the Bohr radius, " is the dielectric
constant, and m is the electron effective mass.) Electron-
electron interaction in a 1D system is expected to lead to
the formation of a Luttinger liquid with properties very
different from those of the noninteracting Fermi gas.

The conductance of an infinite Luttinger liquid was
studied by Kane and Fisher [2], who found that it does
depend on the interactions. In particular, in the case of
repulsive interactions the conductance is below the uni-
versal value of 2e2=h. The discrepancy between the
theory [2] and experiments [1] is usually attributed to
the fact that in order to measure conductance of a quan-
tum wire, it has to be connected to two-dimensional
Fermi-liquid leads. As electrons move from the wire
into the leads, the interactions between them are gradu-
ally reduced to zero. At low frequency !� vF=L the
conductance of such a system is dominated by the leads,
and the universal value 2e2=h is restored [3].

The key assumption leading to this result is the appli-
cability of the Luttinger liquid description of the interact-
ing electron system in a quantum wire. In this Letter we
show that if the interactions are strong, �naB��1 � 1, the
Luttinger liquid picture remains valid only at exponen-
tially low temperatures, and we study the corrections to
the quantized conductance at higher temperatures.

The low-energy properties of an interacting 1D elec-
tron system are most conveniently described by the bo-
sonization approach. In the case of weak interactions the
Hamiltonian of the system can be presented [4] as

H � H� �H�; (1)
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Here the fields ��;�� and ��;�� describe the excita-
tions of the charge and spin modes, respectively,
and satisfy the bosonic commutation relations:
����x�;��0 �x

0�	 � i���0��x� x0�. Parameters K�, K�,
and g1? are determined by the interactions between
electrons, u� and u� are the velocities of propagation of
spin and charge excitations, and � is a short-distance
cutoff.

An important feature of the Hamiltonian (1) is the
separation of the charge and spin variables [5]. This
property is preserved even when bias is applied to the
wire, because the electric potential couples only to the
charge density, and does not excite the spin modes. As a
result, the relatively complicated form (3) of the
HamiltonianHs is not expected to affect the conductance
of the quantum wire.

The derivation [4] of the bosonized Hamiltonian as-
sumes weak interactions between electrons. On the other
hand, the form (1)–(3) of the Hamiltonian is universal;
i.e., with the appropriate choice of the parameters K�;�,
u�;�, and g1?, it is expected to describe the low-energy
properties of 1D electron liquids with arbitrarily strong
interactions. It will be instructive to obtain the
Hamiltonian (1)–(3) from the model of fermions with
strong Coulomb interactions, and to estimate the values of
the parameters entering Eqs. (2) and (3).

Assuming a quadratic energy spectrum of electrons,
��p� � p2=2m, one concludes that at low density n�
a�1
B the potential energy of the electron repulsion e2n="

is much larger than their kinetic energy  �h2n2=m. Thus,
2004 The American Physical Society 106801-1



P H Y S I C A L R E V I E W L E T T E R S week ending
12 MARCH 2004VOLUME 92, NUMBER 10
each other with strong Coulomb forces. If the Coulomb
interaction is screened at large distances by a metal gate
parallel to the wire, the density excitations of the Wigner
crystal (plasmons) are acoustic waves. Thus the low-en-
ergy density excitations of this system must be described
by the Hamiltonian of the form (2). The plasmon velocity
in a one-dimensional Wigner crystal at a distance d from
the gate is u� �

������������������
e2n=mC

p
, where C � "=�2 ln�"nd�	 is

the capacitance per unit length between the crystal and
the gate [6]. (Here " is a numerical coefficient determined
by the geometry of the gate [7].) Parameter K� can be
found by comparing the second term in the integrand of
Eq. (2) with the charging energy per unit length EC �
e2�n2=2C, where �n�x� is the deviation of the density of
electrons from its mean value. The bosonization proce-
dure used in the Hamiltonian (2) identifies �n �
��

���
2

p
=��@x��. Comparing EC with the second term

in Eq. (2), one then finds K� � �� �h=2�
������������������
nC=me2

p
.

Substituting the above expression for C, we summarize

u� �
vF
K�

; K� �
�
2

��������������������
naB

2 ln�"nd�

r
; (4)

where the parameter vF � � �hn=2m is defined as
the Fermi velocity of a noninteracting electron gas of
density n. As expected, at �naB��1 � 1 strong Coulomb
interactions result in K� � 1 and u� � vF.

In the limit of strong coupling the energy of a Wigner
crystal does not depend on the spins of electrons, as the
particles localized near their equilibrium positions can
be viewed as distinguishable. This picture is violated if
one accounts for the overlap of the wave functions of
neighboring electrons. The overlap is due to the possibil-
ity of tunneling through the potential barrier e2="r sep-
arating the electrons. To first order in tunneling, the
overlap occurs only between the nearest neighbors, and
one expects the coupling of the spins to be described by
the Hamiltonian of a Heisenberg spin chain:

H� �
X
l

JSl � Sl�1: (5)

Since the ground state of a system of interacting fermions
in one dimension cannot be spin polarized [8], the ex-
change must have antiferromagnetic sign, J > 0.

A crude estimate of the exchange constant J can be
obtained by calculating the amplitude of tunneling
through the Coulomb barrier e2="r separating two neigh-
boring electrons in the WKB approximation. Placing the
turning points at r � �n�1 and using the reduced mass
m=2, one finds

J EF exp
�
�

(���������
naB

p

�
(6)

with the numerical coefficient ( � �. (Here EF �
�2 �h2n2=8m is defined as the Fermi energy of a noninter-
acting electron gas of density n.) A more careful calcu-
lation [9] implies ( � 2:9.
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The Hamiltonian of the Heisenberg spin chain (5) can
be rewritten in terms of spinless fermion operators al and
ayl with the help of the Jordan-Wigner transformation

Szl �ayl al�
1

2
; Sxl � iSyl �ayl exp

�
i�

Xl�1

j�1

ayj aj

�
: (7)

To study the low-energy properties of the spin chain, one
can bosonize the fermion operators al and ayl . As a result
the Hamiltonian H� takes the form (3); see, e.g., Ref. [4].
The velocity u� of the spin excitations is easily deduced
from the spectrum [10] of the isotropic Heisenberg model,

u� �
�J
2 �hn

: (8)

The sine-Gordon perturbation in Eq. (3) is marginally
irrelevant, i.e., the coupling constant g1? scales to zero
at low energies. At the same time the parameter K� scales
to 1, as required by the SU(2) symmetry of the problem
[4,11].

It is important to stress that the bosonized form (3) of
H� is appropriate only at low temperatures, T � J. In the
following we are also interested in the temperature de-
pendence of the conductance at T  J, and thus we use
the form (5). Interestingly, the dynamics of spin and
charge modes are still completely separated, as the op-
erators (2) and (5) commute. We now show that this
symmetry is violated when the wire is connected to
Fermi-liquid leads.

Following Ref. [3], we model the leads attached to the
quantum wire by two semi-infinite sections of noninter-
acting electron gas. To this end we assume that the 1D
electron density n�x� � n near x � 0, and gradually
grows to a very high value n1 � a�1

B at x! �1.
Assuming that the length scale L of the dependence
n�x� is large compared to the distance between electrons,
one can neglect the backscattering caused by the inho-
mogeneity, and describe the charge excitations by the
bosonized Hamiltonian (2) with position-dependent pa-
rameters u��x� and K��x�. In addition, the coupling con-
stant J in the Hamiltonian (5) now depends on l due to the
density dependence (6) of the exchange interaction. The
exchange constant J�l	 is determined by the density n�xl�
at the position of the lth electron.

Now let us consider the quantum wire in the regime
when an electric current I � I0 cos!t passes through it.
We are interested in the dc limit !! 0, and can thus
assume that all electrons move in phase. The charge
transferred through any point in the wire is Q �
I0!�1 sin!t, so at moment t the lth electron has shifted
to the position l� I0�e!��1 sin!t. Thus, the Hamiltonian
of the spin chain takes the form

H� �
X
l

J�l� q�t�	Sl � Sl�1; q�t� �
I0
e!

sin!t: (9)

One can view current I � e _qq as an excitation of the
charge mode �� and substitute the appropriate relation
106801-2
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q�t� �

���
2

p

�
���0; t� (10)

into the Hamiltonian (9). Therefore the spin modes are
coupled to the charge ones and should affect the conduc-
tance of the wire.

In the following it is more convenient to treat the
current I�t� � I0 cos!t as an external parameter. This
approach corresponds to the experiment with the wire
connected to a current source. We evaluate the energy W
dissipated in the device in unit time in the limit of small
I0 and !. The dc resistance is found from the Joule heat
law W � 1

2 I
2
0R. The advantage of this approach is that the

spin and charge modes are coupled only through the
external parameter I�t�, soW is a sum of two independent
contributions of the charge and spin modes. Thus, the
resistance of the wire is the sum of two terms R � R� �
R�, which can be evaluated by considering the
Hamiltonians H� and H� separately.

The result G � 2e2=h for the conductance of a quan-
tum wire found in Ref. [3] amounts to the calculation of
the resistance R�, as the spin modes were ignored. Thus,
one expects to find R� � h=2e2. Let us outline the deri-
vation of this result in the approach where the current I�t�
through the wire is fixed. Then the charge subsystem is
described by the Hamiltonian (2) with the boundary
condition (10). It is convenient to transform the variables
���x� ! ���x� � �q�t�=

���
2

p
, i.e., to apply to the

Hamiltonian a unitary transformation

U � exp

�
�i

�q�t����
2

p
Z 1

�1
���x� dx

�
: (11)

Upon this transformation the boundary condition be-
comes time independent, ���0� � 0, and the Hamil-
tonian transforms into ~HH� � UyH�U� i �hUy@tU. The
second term is a time-dependent perturbation that excites
plasmons of very low frequency !. The wavelength of
these plasmons is large, u�=!� L, and thus one can
replace u� and K� with their values at x! 1; in particu-
lar, K��1� � 1, as n1aB � 1. The transformed
Hamiltonian ~HH� is conveniently presented in terms of
the operators

bk �
Z 1

�1
7�kx� sinkx

� ������
jkj

p
�

���x� �
i������
jkj

p ���x�
�
dx;

destroying plasmons with frequency !k � u��1�jkj.
Then ~HH� takes the form

~HH � � �h
Z 1

�1

�
!kb

y
k bk � i

I�t�
e

bk � byk��������
2jkj

p
�
dk: (12)

At low frequency !� T the time-dependent perturba-
tion leads to both emission and absorption of plasmons
with k � �!=u��1�. The energy dissipated into plasmon
excitations in unit time is easily found by means of the
Fermi golden rule, resulting in W � 1

2 I
2
0�� �h=e2�. Thus,

we conclude that R� � h=2e2.
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To find R� one has to perform a similar calculation
with a more complicated Hamiltonian (9). Performing
the Jordan-Wigner transformation (7), we rewrite it as

H� �
1

2

X
l

J�l� q�t�	
�
�ayl al�1 � ayl�1al�

� 2

�
ayl al �

1

2

��
ayl�1al�1 �

1

2

�	
:

(13)

In the absence of the external magnetic field the average
spin per site hSzl i � 0. In terms of the Hamiltonian (13) it
means that the fermionic band is half-filled, hayl ali �

1
2 .

The exchange J�l	 takes its lowest value J at the center of
the wire and grows up to J�1	  EF in the leads.

The Hamiltonian (13) can be easily treated if one
neglects the interaction term in its second line. (This
corresponds to the XY model of a spin chain, in which
the z component of exchange vanishes.) Then the
Hamiltonian describes a tight-binding model of noninter-
acting fermions with the bandwidth 2J�l	 varying gradu-
ally between the small value 2J in the wire and a large
value EF in the leads. The fermions with energies j�j<
J pass through the constriction without backscattering,
whereas the ones with j�j > J are reflected. The time
dependence J�l� q�t�	 can be interpreted as a slow move-
ment of the constriction with respect to the Fermi gas,
and leads to the dissipation of energy. For noninteracting
fermions the calculation of W and the respective resis-
tance is rather straightforward, and we find

RXY� �
h

2e2
1

eJ=T � 1
: (14)

At T � J this result is exponentially small, RXY� / e�J=T ,
because at low temperature most of the quasiparticles
pass the constriction without scattering. Only an expo-
nentially small fraction of the excitations are scattered at
the constriction and acquire the energy from the driving
field. The resistance saturates at T=J ! 1, when all the
quasiparticles are backscattered.

The result (14) remains qualitatively correct for the full
model (13). In particular, at J � T the transport of spin
fermions through the constriction is still suppressed, and
R� saturates. In order to find R� at T=J ! 1, one can
notice that the bosonized model (3) is still applicable in
the leads, where J EF � T. Then the absence of spin
transfer through the constriction can be expressed as a
hard-wall boundary condition upon ��.

At q�t� � 0 this boundary condition may be presented
without loss of generality as ���0� � 0. At nonzero q�t�
the same condition �� � 0 is imposed at point l �
�q�t�. The half-filling condition for the Hamiltonian
(13) means that q�t�=2 fermions have passed through
the wire at moment t. In analogy with the calculation
of R�, the boundary condition can be interpreted as
an application of a fixed current _qq�t�=2 of the spin fermi-
ons. The bosonization procedure leading from the
Hamiltonian (13) to Eq. (3) expresses the current of
106801-3
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spin fermions as @t��=�
���
2

p
. Thus, the appropriate

boundary condition for the bosonized spin Hamiltonian
(3) is �

���
2

p
=�����0; t� � q�t�. Note that this boundary

condition is equivalent to Eq. (10), and the Hamil-
tonians (2) and (3) coincide in the leads, where K� �
K� � 1 and g1? � 0. Therefore, one can complete the
evaluation ofR� by repeating the above calculation ofR�,
and we conclude that R� � h=2e2. The conductance of
the wire �R� � R��

�1 reduces to e2=h.
It is worth mentioning that the same boundary con-

dition for the Hamiltonian (3) appears even at T & J if a
sufficiently large magnetic field B is applied. Indeed, if
the Zeeman splitting is large compared to both T and the
coupling J, the electrons in the wire are completely spin
polarized, hSzl i � � 1

2 . In terms of the Hamiltonian (13)
this is interpreted as lowering the chemical potential
below the bottom of the fermionic band in the wire, so
that hayl ali � 0. Thus the two leads are now separated by
a barrier created by the narrowing fermionic band in the
wire. The barrier is centered at l � �q�t�, and, upon
bosonization, imposes the same boundary condition
upon �� as in the case of B � 0 and T > J. We therefore
conclude that in a polarizing magnetic field R� � h=2e2,
and, as expected, the total conductance G � e2=h.

At low temperature T � J the model (13) to first
approximation can be bosonized to the form (3) with
position-dependent parameters u�, K�, and g1?. At T !
0 we have K� � 1 and g1? � 0; i.e., the Hamiltonian (3)
can be viewed as the bosonized version of the XY model.
Then we conclude from Eq. (14) that at zero temperature
R� � 0, and the conductance of the wire remains 2e2=h.

At finite length of the wire L the parameters of
the Hamiltonian (3) do not reach their limiting values
K� � 1, g1? � 0. However, the resulting corrections to
R� remain small in 1=nL even at T  J. A more interest-
ing correction appears due to the fact that the bandwidth
of the Hamiltonian (13) is finite, which is not accounted
for accurately by the bosonization procedure leading to
Eq. (3). If the wire is long, nL� 1, the spin chain (9) is
nearly uniform at each point l. Its low energy excitations
are conveniently classified [10] in terms of spinon quasi-
particles with spectrum � � �

2 J�l	 sinp, where p is the
wave vector in the lattice model. At low temperature T �
J typical excitations have energies � T small compared
to the bandwidth in the center of the constriction. These
spinons pass through the wire without scattering and do
not interact with the driving field. On the other hand, a
small fraction of the spinons have energies exceeding
�J=2. These excitations are not supported by the spin
chain at the center of the wire, and thus are reflected by
the constriction. Similar to the case of the XY model, the
reflected particles acquire energy from the driving field
and contribute to the dissipation. The density of such
spinons is exponentially small, and we get

R�  R0 exp

�
�
�J
2T

�
: (15)
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This treatment does not enable one to evaluate R0. The
analogy with the XY model suggests R0  h=e2.

Experimentally, corrections to the quantized conduc-
tance showing activated temperature dependence consis-
tent with (15) have been reported in short wires [12]. At
higher temperatures the conductance tends to saturate at
0:7� �2e2=h� instead of e2=h. Quantization of conduc-
tance at e2=h in the absence of magnetic field was re-
ported in longer wires at low electron density [13].

To summarize, in the regime of strong interactions,
naB � 1, the electrons in a quantum wire form a Wigner
crystal with exponentially small antiferromagnetic spin
exchange J. At T � J the conductance remains 2e2=h up
to exponentially small corrections, Eq. (15). At J � T
the conductance drops to e2=h. Remarkably, this result
does not assume spontaneous spin polarization in the
wire [14].
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